Решить неравенство -1<=(1-x^2)/(1+x^2)<=1. ( -1 меньше или равно...)
Ответы на вопрос
Ответил Удачник66
1
-1 <= (1-x^2)/(1+x^2) <= 1
Представим дробь по-другому
-1 <= (-x^2-1+2)/(x^2+1) <= 1
Выделим целую часть
-1 <= -1 + 2/(x^2+1) <= 1
Прибавим 1 ко всем частям неравенства
0 <= 2/(x^2+1) <= 2
Левая часть неравенства очевидна:
2/(x^2+1) > 0 при любом х, поэтому нас интересует только правая
2/(x^2+1) <= 2
2/(x^2+1) - 2 <= 0
(2-2-x^2)/(x^2+1) <= 0
-x^2/(x^2+1) <= 0
Очевидно, что x^2 >= 0; x^2 + 1 >= 0 при любом х, поэтому
это неравенство выполняется при любом х.
Ответ: x Є (-oo; +oo)
Представим дробь по-другому
-1 <= (-x^2-1+2)/(x^2+1) <= 1
Выделим целую часть
-1 <= -1 + 2/(x^2+1) <= 1
Прибавим 1 ко всем частям неравенства
0 <= 2/(x^2+1) <= 2
Левая часть неравенства очевидна:
2/(x^2+1) > 0 при любом х, поэтому нас интересует только правая
2/(x^2+1) <= 2
2/(x^2+1) - 2 <= 0
(2-2-x^2)/(x^2+1) <= 0
-x^2/(x^2+1) <= 0
Очевидно, что x^2 >= 0; x^2 + 1 >= 0 при любом х, поэтому
это неравенство выполняется при любом х.
Ответ: x Є (-oo; +oo)
Новые вопросы
Химия,
1 год назад
Литература,
1 год назад
Қазақ тiлi,
1 год назад
Алгебра,
1 год назад
Обществознание,
7 лет назад
Математика,
7 лет назад
-1 <= (-x^2-1+2)/(x^2+1) <= 1
Выделим целую часть
-1 <= -1 + 2/(x^2+1) <= 1