Алгебра, вопрос задал sidorovanastia48 , 11 месяцев назад

(−x² − 2)(x² − 4x²) ≥ 0 ​

Ответы на вопрос

Ответил Аноним
0

Ответ:

Объяснение:

-x² - 2 ≥ 0:

Розв'яжемо цю нерівність:

-x² - 2 ≥ 0

-x² ≥ 2

x² ≤ -2.

Оскільки квадрат ніколи не може бути від'ємним, ця нерівність не має розв'язків.

x² - 4x² ≥ 0:

Розв'яжемо цю нерівність:

-3x² ≥ 0

x² ≤ 0.

Тут розв'язком є x = 0.

Тепер, оскільки вам треба врахувати обидва нерівності, враховуючи області, де вони виконуються, ми можемо сформулювати відповідь:

Розв'язок: x = 0.

Пояснення: Оскільки перше добуток завжди менше або дорівнює нулю (бо один доданок завжди негативний, а інший - не менше нуля), та друге добуток завжди не менше нуля (оскільки обидва доданки додатні), область виконання нерівності буде визначатися лише першим множником. Оскільки x² не може бути менше нуля, перша нерівність не має розв'язків.

Новые вопросы