Вычислите периметр квадрата, сторона которого вдвое больше наклонной стороны равнобедренной трапеции с периметром 72 см и суммой измерений оснований, равной сумме измерений наклонных сторон.
Ответы на вопрос
Ответил luckyescape
1
Ответ:
Периметр квадрата равен 144 см.
Пошаговое объяснение:
Рассмотрим равнобедренную трапецию ABCD.
Так как сумма измерений оснований равна сумме измерений наклонных сторон, а периметр равен 72 см, то:
AB+CD=AD+BC=72:2=36 (см)
AB=CD=36:2=18 (см) - так как в равнобедренной трапеции боковые стороны равны.
Рассмотрим квадрат.
Так как его сторона вдвое больше наклонной стороны трапеции, что равно 18 см, то:
18*2=36 (см) - длина стороны квадрата.
Периметр квадрата: 36*4=144 (см).
Приложения:
4rtteam:
спасибо огромное
Новые вопросы