Математика, вопрос задал Bananaa , 9 лет назад

В треугольнике ABC проведены высоты AN и BM и отмечена точка К - середина стороны АВ. Найдите площадь треугольника АВC, если известно, что угол АСВ = 105, а площадь треугольника MNK =25

Ответы на вопрос

Ответил sava2002
0

Если на АВ, как на диаметре, построить окружность, с центром в К, то точки М и Н будут лежать на ней (ВМ перпеендикулярно АМ, и АН перпендикулярно ВН). Нам задана площадь треугольника МНК = 25. Легко видеть, что треугольник равнобедренный, и стороны его равны половине АВ (как много можно узнать, просто проведя циркулем по плоскости:)).

Нам осталось найти угол между КН и КМ.

Но угол АКМ = 2*(угол АВМ); (это центральный и вписанный углы, опирающиеся на одну и ту же дугу АМ), аналогично угол ВКН = 2*(угол ВАН); 

угол ВАН + угол АВМ = 180 - 105 = 75 градусов. Поэтому

угол  АКМ + угол ВКН = 150 градусов.

угол МКН = 180 - 150 = 30 градусов.

Если АВ/2 = х, то

25 = х^2*sin(30)/2; x^2 = 100; x = 10; AB = 20;

Новые вопросы