В треугольнике ABC биссектриса из вершины А , высота из вершины В и серединный перпендикуляр к стороне AB пересекаются в одной точке . Найдите величину угла А.
Ответы на вопрос
Ответил Nastya02860389
0
Пусть Q точка пересечения указанных в условии биссектрисы, высоты BH и серединного перпендикуляра. Обозначим BAQ = CAQ = α . Поскольку точка Q лежит на серединном перпендикуляре к отрезку AB , то ABQ = BAQ = α.
Сумма острых углов прямоугольного треугольника ABH равна 90 градусов , поэтому α + 2α = 90 градусов . Отсюда находим, что α = 30 градусов .=> BAC = 2α = 60 градусов .
Сумма острых углов прямоугольного треугольника ABH равна 90 градусов , поэтому α + 2α = 90 градусов . Отсюда находим, что α = 30 градусов .=> BAC = 2α = 60 градусов .
Новые вопросы