В ромбе один из углов равен 60°. Меньшая диагональ равна 12 см. Найдите площадь ромба.
Аноним:
При градусах 60°;120° диагональ равна стороне ромба. S=12²*sin60°=144*1/2=72см
Ответы на вопрос
Ответил alinochka2595
2
Стороны ромба равны, его диагонали взаимно перпендикулярны, точкой пересечения делятся пополам и являются биссектрисами углов ромба.
Обозначим ромб ABCD. BD и АС - диагонали.
Диагональ BD=12 см (дано).
∆ ВАD равнобедренный, угол ВАD=60° (дано), ⇒ углы при основании ВD равны 60°. ⇒ АВ=AD=ВD=12 см.
Диагональ АС=2АО.
АО=АВ•sin60°=6√3;
AC=12√3 см
-------
Как вариант для решения можно приметить т.Пифагора или теорему о равенстве суммы квадратов сторон и квадратов диагоналей параллелограмма.
Обозначим ромб ABCD. BD и АС - диагонали.
Диагональ BD=12 см (дано).
∆ ВАD равнобедренный, угол ВАD=60° (дано), ⇒ углы при основании ВD равны 60°. ⇒ АВ=AD=ВD=12 см.
Диагональ АС=2АО.
АО=АВ•sin60°=6√3;
AC=12√3 см
-------
Как вариант для решения можно приметить т.Пифагора или теорему о равенстве суммы квадратов сторон и квадратов диагоналей параллелограмма.
Приложения:
Новые вопросы
Русский язык,
1 год назад
Українська мова,
2 года назад
Немецкий язык,
2 года назад
Алгебра,
8 лет назад