В прямоугольном треугольнике угол между биссектрисой и медианой, проведенными из вершины прямого угла равен 13°. Найдите больший из двух острых углов треугольника. Ответ дайте в градусах. ПОМОГИТЕ!!!!!!!!
Ответы на вопрос
Ответил nafanya2014
0
Пусть дан треугольник АВС (см. рисунок), угол С=90° и АС< BC. СО- медиана, СМ- биссектриса
АО=ОВ=ОС=R, где R- радиус описанной окружности и треугольники СОВ и АОС - равнобедренные.
Биссектриса СM делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника. Так как АС < BC, то АM < MB.
Угол АСО равен углу ВСО и равны 45°. Угол ОСВ =45°-13°=32°.
Угол СВО=углу ОСВ=32°, так как ΔСОВ- равнобедренный.
Угол САВ=90°-32°=58°
Ответ 58°
АО=ОВ=ОС=R, где R- радиус описанной окружности и треугольники СОВ и АОС - равнобедренные.
Биссектриса СM делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника. Так как АС < BC, то АM < MB.
Угол АСО равен углу ВСО и равны 45°. Угол ОСВ =45°-13°=32°.
Угол СВО=углу ОСВ=32°, так как ΔСОВ- равнобедренный.
Угол САВ=90°-32°=58°
Ответ 58°
Приложения:
Новые вопросы
Русский язык,
6 лет назад
Физика,
6 лет назад
Математика,
10 лет назад
Алгебра,
10 лет назад
Математика,
10 лет назад