У трикутнику ABC проведено
медіани АК; ВМ; СД, які
перетинаються в точці О.
АО=12 см; ОД=4 см; ВМ=15 см.
Знайти ОК; ДС; ОМ.
ОК=3 см; ДС=6 см; ОМ= 5 см
ОК=6 см; ДС=12 см; ОМ= 10 см
ОК=3 см; ДС=6 см; ОМ= 5 см
ОК=6 см; ДС=12 см; ОМ= 5 см
Ответы на вопрос
Ответил mmellnykteacher
0
Відповідь:ОК = 6 см; ДС = 6 см; ОМ = 3 см.
Пояснення:
Медіана в трикутнику ділить іншу сторону від точки перетину на дві рівні частини. Отже, якщо АО = 12 см, то ОК буде половиною довжини медіани АК, тобто ОК = 6 см.
Також медіана СД ділить медіану АК відносно точки перетину в такому ж співвідношенні. Тому ДС буде половиною ОК, тобто ДС = 6 см.
Медіана ВМ ділить медіану СД в такому ж співвідношенні, як і вище. Тому ОМ буде половиною ДС, тобто ОМ = 3 см.
Отже, правильна відповідь: ОК = 6 см; ДС = 6 см; ОМ = 3 см.
Новые вопросы
Математика,
4 месяца назад
Алгебра,
4 месяца назад
Окружающий мир,
5 месяцев назад
Другие предметы,
6 лет назад