Геометрия, вопрос задал ааааангел , 9 лет назад

сторона основания АВС правильной треугольной  пирамиды МАВС равна 6 см, а отрезок соединяющий вершину  М пирамиды с центром О основания,- 8 см найдите боковые ребра пирамиды

Ответы на вопрос

Ответил Ishem
0
Если соединим все точки, то получим правильную треугольную пирамиду МАВС, у которой МА=МВ=МС=4см, АВ=ВС=АС=6см. Искомое расстояние - это перпендикуляр МН на нижнюю грань АВС. Так как треуг. АВС правильный, то точка Н будет центром описанной (вписанной тоже) окружности. АН=ВН=СН=R.

Радиус окружности, описанной около правильного треугольника вычисляется по формуле: R=a/√3, где а - это сторона треуг АВС.

R=6/√3 см.

Из треуг-ка АНМ по теореме пифагора: МН=√(АM^2-AH^2)=√(16-36/3)=2 см
Новые вопросы