Алгебра, вопрос задал sofiiik18 , 6 месяцев назад

срочно При яких значеннях т розв'язком нерівності x²- 6x+m​

Ответы на вопрос

Ответил lUwUl7
1

Відповідь:

Для знаходження розв'язків нерівності \(x^2 - 6x + m < 0\), треба враховувати дискримінант квадратного тринома. Дискримінант \(D\) обчислюється за формулою \(D = b^2 - 4ac\), де \(a = 1\), \(b = -6\), \(c = m\).

1. Якщо \(D > 0\), то нерівність має два різних дійсних корені, і вона виконується для значень \(x\) між цими коренями.

2. Якщо \(D = 0\), то нерівність має один дійсний корінь, і вона виконується тільки для цього конкретного значення \(x\).

3. Якщо \(D < 0\), то нерівність не має дійсних коренів, і вона виконується для всіх значень \(x\).

Отже, умова \(D > 0\) або \(D = 0\) визначає, при яких значеннях \(m\) нерівність \(x^2 - 6x + m < 0\) має розв'язки.

Пояснення:

Новые вопросы