Срочно! Даю 35 баллов.
Пусть — положительная несократимая дробь. На какое наибольшее число может быть сократима дробь ?
Ответы на вопрос
Ответил Arinakilo
0
Пусть 2m + 3n = rp, 7m + 2n = rq, НОД(p, q) = 1, при этом дробь сократима на r.
Выражаем m, n через r, p, q:
m = (3q - 2p)*r/17
n = (7p - 2q)*r/17
По условию m/n - положительная несократимая дробь, поэтому НОД(m, n) = 1. Чтобы m, n были взаимно просты, r должно быть равно 1 (и 3q - 2p, 7p - 2q делятся на 17), или r = 17; в противном случае оба числа делятся на какой-то делитель r.
r = 17 будет, например, если m/n = 1/5, тогда (2m+3n)/(7m+2n)=17/17.
Выражаем m, n через r, p, q:
m = (3q - 2p)*r/17
n = (7p - 2q)*r/17
По условию m/n - положительная несократимая дробь, поэтому НОД(m, n) = 1. Чтобы m, n были взаимно просты, r должно быть равно 1 (и 3q - 2p, 7p - 2q делятся на 17), или r = 17; в противном случае оба числа делятся на какой-то делитель r.
r = 17 будет, например, если m/n = 1/5, тогда (2m+3n)/(7m+2n)=17/17.
Новые вопросы
Русский язык,
2 года назад
Математика,
2 года назад
Литература,
8 лет назад
Алгебра,
8 лет назад
Математика,
9 лет назад