Алгебра, вопрос задал MAP12 , 1 год назад

Снова не идет матан , кто может помочь решить. будут очень благодарен) 11 кл

Приложения:

Ответы на вопрос

Ответил Удачник66
2

Ответ:

Нет решений

Объяснение:

Если два логарифм с одинаковым основанием равны, то равны и выражения под логарифмом.

x^3 - 7x + 2sin x + 3 = x^3 - 7x + 2sin x - 4

Сокращаем одинаковые элементы

3 = - 4

Этого не может быть, значит, решений нет.

Ответил Olga8128
0

Ответ: нет решений.

Объяснение:

Если есть два равных логарифма с одинаковым основанием (так как логарифмы натуральные, то основание - число e), то равны и выражения под логарифмом.

То есть:

In (x^3-7x+2sin (x)+3)=In(x^3-7x+2sin(x)-4)\\\\\Rightarrow x^3-7x+2sin (x)+3 =x^3-7x+2sin(x)-4\\

Теперь сокращаем одинаковые части (x^3-7x+2sin(x)) и получаем:

3 = -4

Но это, естесственно, неправда, поэтому решений у уравнения нет.


antonovm: как вы лихо логарифмы выкидывайте ( это относится и к предыдущему решению ) ; ln( 1-x) = ln(x-1) ; 1-x = x-1 ; x = 1 ? (вот так делать нельзя) , ну нет решений , а если бы были ? переход к следствию неравносилен , должна быть система
Удачник66: Так как логарифмы одинаковые - натуральные, то их можно одновременно отбросить. Ваш пример ln(1-x) = ln(x-1) не подходит, потому что под логарифмом должно быть положительное число, а два противоположных не могут быть оба положительными. При x = 1 будет x-1 = 1-x = 0, а логарифм нуля не определен.
antonovm: правильно, под логарифмом должно быть положительное число , поэтому уравнение ln( f(x)) = ln(g(x) ) равносильно системе : f(x) = g(x) и f(x) > 0 или f(x) = g(x) и g(x)>0 , просто отбрасывать логарифмы нельзя , иначе может получится посторонние корни , в этом примере просто повезло , что корней нет , но ваш переход неправилен
antonovm: так же нельзя просто выбросить корни в уравнении : корень из(f(x)) = корень из(g(x)) , равенство корней не равносильно равенству подкоренных выражений
antonovm: и почему мой пример не подходит ? , я решал как вы : просто выбросил логарифмы и стал решать полученное уравнение , но полученное уравнение в отличии от вашего примера просто имеет корень , а ваше корней не имеет
antonovm: скорее всего в условии этого примера где-то ошибка , уж слишком он примитивен
antonovm: " Если два логарифм с одинаковым основанием равны, то равны и выражения под логарифмом." - вот это неверно , надо добавить : при условии , что оба они положительны
antonovm: ну или в конце решения сделать проверку , но здесь просто проверять нечего ( повезло)
Удачник66: Насчёт условия, что выражения под логарифмом должны быть оба положительные - это само собой разумеется, от отрицательного числа нельзя взять логарифм.
Удачник66: А насчёт ошибки в задании я полностью согласен, слишком просто все получается.
Новые вопросы