sin^2 2x+sin4x=1 Решить уравнение
Ответы на вопрос
Ответил mefody66
0
sin^2 2x + 2sin 2x*cos 2x = cos^2 2x + sin^2 2x
2sin 2x*cos 2x = cos^2 2x
cos^2 2x - 2sin 2x*cos 2x = 0
cos 2x*(cos 2x - 2sin 2x) = 0
1) cos 2x = 0; 2x = pi/2 + pi*k; x1 = pi/4 + pi/2*k
2) cos 2x - 2sin 2x = 0
2sin 2x = cos 2x
tg 2x = 1/2; 2x = arctg(1/2) + pi*n; x2 = 1/2*arctg(1/2) + pi/2*n
2sin 2x*cos 2x = cos^2 2x
cos^2 2x - 2sin 2x*cos 2x = 0
cos 2x*(cos 2x - 2sin 2x) = 0
1) cos 2x = 0; 2x = pi/2 + pi*k; x1 = pi/4 + pi/2*k
2) cos 2x - 2sin 2x = 0
2sin 2x = cos 2x
tg 2x = 1/2; 2x = arctg(1/2) + pi*n; x2 = 1/2*arctg(1/2) + pi/2*n
Новые вопросы