Швидкість течії річки дорівнює 5 км/год. Моторний човен плив за течією річки 5 год, а проти течії - 2 год. Яка швидкість човна у стоячій воді, якщо шлях, пройдений ним проти течії річки,становить 24% шляху, який він пройшов за течією річки?
Ответы на вопрос
Ответ:
20 км/ч.
Объяснение:
Для решения этой задачи нужно составить уравнение, а уравнение содержит в себе две равные части.
За х я взял скорость лодки.
Получается, что скорость катера по течением реки равна х + 5км/ч,
а против течения х - 5км/ч.
Для уравнения нужно использовать 1% от всего пути по реке.
Это значит, что нужно его найти от каждого проделанного пути по и против течения реки.
1% всего пути лодки против течения:
(х - 5кмп/ч. * 2ч) : 24%.
Для того чтобы узнать 1% от пути нужно узнать сначала путь формулой V * T = S, и потом делить на проценты проделанного пути против течения в соотношении с проделанным путем по течению.
Получается одна двенадцатая икс минус пять двенадцатых.
Точно также со 1% по течению.
А так как эти проценты относятся к одному целому можно составить такое уравнение:
Одна двадцатая икс плюс одна четвертая равно одна двенадцатая икс минус пять двенадцатых.
Его корень - 20.
Х - скорость лодки в стоящей воде.