Алгебра, вопрос задал samira0078 , 6 лет назад

Сделайте пж нам два поставят дадим 10 баллов

Приложения:

samira0078: 20 баллов Пж

Ответы на вопрос

Ответил Ляляляля109
1

1)

а)

 \frac{15a}{25b}  =  \frac{3a}{5b}

б)

 \frac{15a + 15c}{25b}  =  \frac{15(a + c)}{25b}  =  \frac{3(a + c)}{5b}  =  \frac{3a + 3c}{5b}

в)

 \frac{5a \times 5b}{10c}  =  \frac{25ab}{10c}  =  \frac{5ab}{2c}

г)

 \frac{5a - 5b}{10c}  =  \frac{5(a - b)}{10c}  =  \frac{a - b}{2c}

д)

 \frac{ {a}^{5}  \times  {a}^{3} }{ {a}^{10} }  =  \frac{ {a}^{8} }{ {a}^{10} }  =  \frac{1}{ {a}^{2} }

е)

 \frac{ {a}^{5}  +  {a}^{3} }{ {a}^{10} }  =  \frac{ {a}^{3}( {a}^{2}   + 1)}{ {a}^{10} }  =  \frac{ {a}^{2}  + 1}{ {a}^{7} }

ж)

 \frac{ {a}^{5}  +  {a}^{3} }{ {a}^{6} +  {a}^{4}  }  =  \frac{ {a}^{3} ( {a}^{2}  + 1)}{ {a}^{4} ( {a}^{2}  + 1)}  =  \frac{1}{a}

2)

а)

 \frac{12 {a}^{3}  {b}^{2} }{18 {a}^{4} }  =  \frac{2 {b}^{2} }{3a}

б)

 \frac{12 {a}^{3} {b}^{2}  + 6  {a}^{2} }{18 {a}^{4} }  =  \frac{6 {a}^{2}(2a {b}^{2}   + 1)}{18 {a}^{4} }  =  \frac{2a {b}^{2} + 1 }{3 {a}^{2} }

в)

 \frac{12 {a}^{3}  {b}^{2}  + 6 {a}^{2} }{18 {a}^{4}  - 3 {a}^{2} }  =  \frac{6 {a}^{2} (2a {b}^{2}  + 1)}{3 {a}^{2}(6 {a}^{2}  - 1) }  =  \frac{2(2a {b}^{2}  + 1)}{6 {a}^{2} - 1 }  =  \frac{4a {b}^{2}  + 1}{6 {a}^{2}  - 1}

г)

 \frac{ {a}^{2} + ab }{a}  =  \frac{a(a + b)}{a}  = a + b

д)

 \frac{ {a}^{2} - ab }{b - a}  =  \frac{a(a - b)}{ - (a - b)}  =  - a

е)

 \frac{ -  {a}^{2}  + ab}{ {a}^{2} b - a {b}^{2} }  =  \frac{ - a(a - b)}{ab(a - b)}  =  -  \frac{1}{b}

3)

а)

 \frac{ {x}^{2}  - 4 {y}^{2} }{x + 2y}  =  \frac{(x - 2y)(x + 2y)}{x + 2y}  = x - 2y

б)

 \frac{ {x}^{2}  - 4 {y}^{2} }{x - 2y}  =  \frac{(x - 2y)(x + 2y)}{x - 2y}  = x + 2y

в)

 \frac{2y + x}{ {x}^{2}  - 4 {y}^{2} }  =  \frac{2y + x}{(x - 2y)(x + 2y)}  =  \frac{1}{x - 2y}

г)

 \frac{2y - x}{ {x}^{2}  - 4 {y}^{2} }  =  -  \frac{x - 2y}{(x - 2y)(x + 2y)}  =  -  \frac{1}{x + 2y}

[/tex]</p><p>4)</p><p>а)</p><p>[tex] \frac{ {m}^{2} - 25 }{ {m}^{2}  + 10m + 25}  =  \frac{(m + 5)(m - 5)}{ {(m + 5)}^{2} }  =  \frac{m - 5}{m + 5}

б)

 \frac{ {m}^{2} + 10m + 25 }{25 -  {m}^{2} }  =  \frac{ {(m + 5)}^{2} }{(5 - m)(5 + m)}  =  \frac{m + 5}{5 - m}

в)

 \frac{ {m}^{2}  - 10m + 25}{ {m}^{2} - 25 }  =  \frac{ {(m - 5)}^{2} }{(m - 5)(m + 5)}  =  \frac{m - 5}{m + 5}

г)

 \frac{25 -  {m}^{2} }{ {m}^{2}  - 10m + 25}  =  \frac{ - (m - 5)(5 + m)}{ {(m - 5)}^{2} }  =  -  \frac{5 + m}{m - 5}

Новые вопросы