решите :
sin3x+sinx+2cosx=sin2x+2cos²x
Ответы на вопрос
Ответил drwnd
7
т.к. уравнение мы возводили к квадрат, то у нас могли появиться побочные корни.
корень не является решением уравнения , что проверяется подстановкой. (синус - нечетная функция, sin(-x)=-sinx, )
корнем уравнения является только:
.
*но корнем (см. 7 строку решения) является , поэтому:
ответ:
Ответил sedinalana
1
sin3x+sinx+2cosx=sin2x+2cos²x
2sin2xcosx+2cosx=2sinxcosx+2cos²x
4sinxcos²x+2cosx-2sinxcosx-2cos²x=0
2cosx(2sinxcosx+1-sinx-cosx)=0
cosx=0⇒x=π/2+πk,k∈z
(2sinxcosx+sin²x+cos²x-(sinx+cosx)=0
(sinx-cosx)²-(sinx+cosx)=0
(sinx+cosx)(sinx+cosx-1)=0
sinx+cosx=0/cosx≠0
tgx+1=0⇒tgx=-1⇒x=-π/4+πk,k∈z
sinx+cosx-1=0
2sinx/2cosx/2+cos²x/2-sin²x/2-sin²x/2-cos²x/2=0
-2sin²x/2+2sinx/2cosx/2=0
-2sinx/2*(sinx/2-cosx/2)=0
sinx/2=0⇒x/2=πk⇒x=2πk,k∈z
sinx/2-cosx/2=0/cosx/2
tgx/2-1=0⇒tgx/2=1⇒x/2=π/4+πk⇒x=π/2+2πk,k∈z
Ответ
x=π/2+πk,k∈z
x=-π/4+πk,k∈z
x=2πk/,k∈z
2sin2xcosx+2cosx=2sinxcosx+2cos²x
4sinxcos²x+2cosx-2sinxcosx-2cos²x=0
2cosx(2sinxcosx+1-sinx-cosx)=0
cosx=0⇒x=π/2+πk,k∈z
(2sinxcosx+sin²x+cos²x-(sinx+cosx)=0
(sinx-cosx)²-(sinx+cosx)=0
(sinx+cosx)(sinx+cosx-1)=0
sinx+cosx=0/cosx≠0
tgx+1=0⇒tgx=-1⇒x=-π/4+πk,k∈z
sinx+cosx-1=0
2sinx/2cosx/2+cos²x/2-sin²x/2-sin²x/2-cos²x/2=0
-2sin²x/2+2sinx/2cosx/2=0
-2sinx/2*(sinx/2-cosx/2)=0
sinx/2=0⇒x/2=πk⇒x=2πk,k∈z
sinx/2-cosx/2=0/cosx/2
tgx/2-1=0⇒tgx/2=1⇒x/2=π/4+πk⇒x=π/2+2πk,k∈z
Ответ
x=π/2+πk,k∈z
x=-π/4+πk,k∈z
x=2πk/,k∈z
Новые вопросы
ОБЖ,
1 год назад
Русский язык,
1 год назад