решите пожалуйста
В квадрате со стороной 5 см расположено 26 точек. Докажите, что среди них существуют две точки, расстояние между которыми не более √2 см.
Ответы на вопрос
Ответил Voxman
0
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.
Приложения:
Ответил Voxman
0
Согласен. Но так уж тут повелось.
Ответил Newtion
0
В жизни не знал такого принципа... Теперь знаю, благодаря ва :)
Ответил Newtion
0
Вам*, Спасибо!
Ответил oganesbagoyan
0
С помощью этого принципа решаются многочисленные
Ответил oganesbagoyan
0
трудные задачи !
Новые вопросы
Українська література,
2 года назад
Математика,
8 лет назад
Математика,
8 лет назад
География,
9 лет назад