Геометрия, вопрос задал SofaShevel , 7 лет назад

решите пожалуйста!!!! срочно.даю 34 баллов​

Приложения:

Ответы на вопрос

Ответил Kirillbacherikov1999
0

Ответ:

1. ∠ABD = ∠ACD = 90° по условию,

∠DAB = ∠DAC по условию,

DA - общая сторона для треугольников DAB и DAC, ⇒

ΔDAB = ΔDAC по гипотенузе и острому углу.

2. ∠BDA = ∠BDC = 180° : 2 = 90°, так как эти углы смежные.

∠BAD = ∠BCD по условию,

сторона BD - общая для треугольников BAD и BDC, ⇒

ΔBAD = ΔBCD по катету и противолежащему острому углу.

3. ∠ABE = ∠DCE = 90°

∠CED = ∠BEA как вертикальные,

ED = EA по условию, ⇒

ΔABE = ΔDCE по гипотенузе и острому углу.

∠ABD = ∠DCA = 90°,

∠EAD = ∠EDA как углы при основании равнобедренного треугольника EAD,

AD - общая сторона для треугольников ABD и DCA, ⇒

ΔABD = ΔDCA по гипотенузе и острому углу.

4. АВ = 2ВС = 2 · 4 = 8, так как катет, лежащий напротив угла в 30°, равен половине гипотенузы.

5. Сумма острых углов прямоугольного треугольника равна 90°. Тогда

∠А = 90° - ∠В = 90° - 60° = 30°.

ВС - катет, лежащий напротив угла в 30°, ⇒

ВС = АВ/2 = 10/2 = 5

6. ∠А = 90° - ∠В = 90° - 45° = 45°, значит ΔАВС равнобедренный,

ВС = АС = 6

7. Прямоугольный треугольник с углом 45° - равнобедренный (доказано в задаче 6), значит высота CD является биссектрисой и медианой.

∠ACD = ∠BCD = 90°/2 = 45°,

тогда и ΔCDB равнобедренный, DB = CD = 8.

AD = DB = 8 (так как CD и медиана), ⇒AB = 16

8. ∠СВЕ = 90° - 60° = 30°

В ΔСВЕ напротив угла в 30° лежит катет ЕС = 7, значит

гипотенуза ВЕ = 2ЕС = 2 · 7 = 14.

∠АВЕ = 60° - ∠ВАЕ = 60° - 30° = 30°, так как внешний угол треугольника (∠ВЕС) равен сумме двух внутренних, на смежных с ним.

Тогда ΔАВЕ равнобедренный, АЕ = ВЕ = 14.

9. Так как ΔАВС равнобедренный, ∠ВАС = ∠ВСА,

∠АЕС = ∠CDA = 90°,

АС - общая сторона для треугольников АЕС и CDA, ⇒

ΔАЕС = ΔCDA по гипотенузе и острому углу.

Значит AD = CE.

Объяснение:

Новые вопросы