Алгебра, вопрос задал polinamation , 6 лет назад

решите пожалуйста срочно

Приложения:

Ответы на вопрос

Ответил sangers1959
2

Объяснение:

a)\ (\frac{1}{81})^{0,5x-2}=27\\ (\frac{81}{1}) ^{-(0,5x-2)}=3^3\\81^{2-0,5x}=3^3\\(3^4)^{2-0,5x}=3^3\\3^{4*(2-0,5x)}=3^3\\3^{8-2x}=3^3\ \ \ \ \  \Rightarrow\\8-2x=3\\2x=5\ |:2\\x=2,5.

Ответ: x=2,5.

b)\ log_4(5-12x)=\frac{1}{2}\ |*2\ \ \ \ \ \ 5-12x > 0\ \ \ \ \ 12x < 5\ |:12\ \ \ \ \ x < \frac{5}{12}\approx0,42. \\ 2*log_4(5-12x)=1\\log_4(5-12x)^2=log_44\\(5-12x)^2=4\\25-120x+144x=4\\144x^2-120x+21=0\\D=2304\ \ \ \ \sqrt{D} =48\\x_1=0,25\in\ \ \ \ \ x_2=\frac{7}{12} \notin.

Ответ: x=0,25.

c)\ \sqrt{-x^2+18}=\sqrt{-3x}

ОДЗ: -x²+18≥0      x^2≤18     x∈[-3√2;3√2]   -3x≥0\ |:(-3)     x≤0      ⇒

                                             x∈[-3√2;0].

(\sqrt{-x^2+18})^2=(\sqrt{-3x})^2\\-x^2+18=-3x\\x^2-3x-18=0\\D=81\ \ \ \ \ \sqrt{D}=9\\ x_1=-3\in\ \ \ \ \ x_2=6\notin.

Ответ: x=-3.

d)\ sin(\frac{\pi }{8}-x)=\frac{\sqrt{3} }{2}\\ \left \{ {\frac{\pi }{8}-x=\frac{\pi }{3}+2\pi n } \atop {\frac{\pi }{8}-x}=\frac{2\pi }{3}+2\pi n } \right.  \ \ \ \ \ \left \{ {{x=\frac{\pi }{8}-\frac{\pi }{3} +2\pi n } \atop {x=\frac{\pi }{8}-\frac{2\pi }{3} +2\pi n}} \right.\ \ \ \ \ \left \{ {{x_1=-\frac{5\pi }{24} +2\pi n,\ n\in\mathbb N} \atop {x_2=-\frac{13\pi }{24}+2\pi n,\ n\in\mathbb N }} \right.  .

Новые вопросы