Решите неравенства двумя способами:
1) x2-x-9<0;
4) 8х2+10x–3 ≥ 0;
7) —x2—12x-100 ≤ 0;
Помогите пожалуйста
Ответы на вопрос
1) x²-x-9<0;
x²-x-9=0; х=(1±√37)/2
с помощью квадратичной функции. график парабола. ветви вверх. нули функции х=(1±√37)/2, нас интересует та часть графика, которая ниже оси х ох, это х∈((1-√37)/2;(1+√37)/2),
2 способ. Метод интервалов.
____(1-√37)/2________(1+√37)/2)______
+ - +
х∈((1-√37)/2;(1+√37)/2),
4) 8х²+10x–3 ≥ 0; х=(5±√(25+24))/8; х=3/2; х=-1/4
Ветви параболы вверх, нас теперь интересует та ее часть, которая выше оси ох. х∈(-∞;-14]∪[3/2;+∞)
2 способ. Метод интервалов.
____-1/4________3/2______
+ - +
х∈((∞-;-1*4]∪[3/2;+∞)
_______________
7) —x²—12x-100 ≤ 0;
x²+12x+100 ≥0;
дискриминант меньше нуля. первый коэффициент положителен. равен 1, парабола находится выше оси ох, значит, для любого х x²+12x+100 больше нуля. поэтому ответом будет (-∞;+∞)
метод интервалов подходит любое число, лежащее на интервале
(-∞;+∞)