Алгебра, вопрос задал nikkifox , 8 лет назад

Решить уравнение
|x^2 – x – 2| = |2x^2 – x – 1|

Ответы на вопрос

Ответил Аноним
0
Поскольку левая и правая части уравнения принимают неотрицательные значения, то мы имеем право возвести в квадрат обе части уравнения, т.е.
 (x^2-x-2)^2=(2x^2-x-1)^2\ (x^2-x-2)^2-(2x^2-x-1)^2=0
В левой части используем формулу разности квадратов, т.е.
(x^2-x-2-2x^2+x+1)(x^2-x-2+2x^2-x-1)=0\ (-x^2-1)(3x^2-2x-3)=0\ -(x^2+1)(3x^2-2x-3)=0
Произведение равно нулю, если хотя бы один из корней равен нулю, т.е.
x^2+1=0
Это уравнение решений не имеет, т.к. левая часть уравнения принимает только положительные значения.
3x^2-2x-3=0\ D=(-2)^2-4cdot3cdot(-3)=40\ \ x_{1,2}= dfrac{1pm sqrt{10} }{3}

Ответ: dfrac{1pm sqrt{10} }{3} .
Новые вопросы