Алгебра, вопрос задал Loskut , 9 лет назад

Решить систему неравенств( задание типа С3 )

 left { {{ <br />
log_{6-x} frac{(x-6)^2}{x-2}   geq 2} atop { frac{x^2-x-14}{x-4} +  <br />
frac{x^2-8x+3}{x-8}   leq 2x+3}} right. <br /><br />

Ответы на вопрос

Ответил МудрыйЕвреюшка
0
С3, неплохо
log(6-x, (x-6)^2/(x-2)) >= 2
ОДЗ: 
(x-6)^2/(x-2) >0 => (2;6) U (6;+oo)
 6-х == 1 => x==5
6-x>0 => (-oo;6)
общий промежуток: (2;5) U (5;6)
Пользуемся правилом разности логарифмов
log(6-x, (x-6)^2) - log(6-x, x-2) >=2
2log(6-x, |x-6|)-log(6-x, x-2)>=2
-log(6-x, x-2)>=0
log(6-x, x-2)<=0
1. 6-x C (0;1)
6-x>0 => 6<x
6-x<1 => x>5
общий промежуток (5;6)
меняем знак неравенства
x-2>=1
x>=3
общее решение (5;6)
2. 6-x C (1;+oo)
6-x>1 => x<5
x-2<=1
x<=3
общее решение (-oo;3]
С учетом ОДЗ
(2;3] U (5;6)


(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3
Здесь можно не побрезговать и тупо привести к общему знаменателю
(x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0
После всех подсчетов остается
(x+4)/((x-4)(x-8))<=0
методом интервалов
x<=-4; x C (4;8)

объединяем два неравенства: (5;6)
ответ: (5;6)
Новые вопросы