Математика, вопрос задал ske46hbhj , 1 год назад

Ребят, нужно подробное решение со всеми пояснениями! Буду очень благодарен за РАЗВЁРНУТЫЙ ответ!

Приложения:

hderyb: Извиняюсь, но вам разве не решили уже?
ske46hbhj: там не понятно, что правильно
hderyb: Тоже на самом деле запутался))) но я бы, наверное, так же как там решал
ВикаБач: y=sqrt((5-x)/x)=sqrt(5/x -1); 5/x - 1 >= 0; 5/x >= 1l 0 < x <= 5; Далее не совсем понятео, "целых значений" ЧЕГО? Если аргумента, то 1+2+3+4+5=18, если функции, то бесконечность 0+1+2+3+4+5+6+......
ГАЗ52: у=√((х/(5-х))^(-1)),
область определения у=√((5-х)/х),
(5-х)/х≥ 0
х∈(0;5].
Целые 1+2+3+4+5=15
ГАЗ52: "...Далее не совсем понятео, "целых значений" ЧЕГО? Если..
ГАЗ52: В вопросе НАЙДЕННОЙ ОБЛАСТИ
ВикаБач: В вопросе "... сумму всех целых значений в найденной области...", но не уточнено значений ЧЕГО, значений аргумента или значений функции в этой области. Спасибо за арифметику, конечно 15, :)))
ГАЗ52: Найти область определения.......сумму целых значений в найденной области.
ВикаБач: :)) "сумму целых значений" ЧЕГО? Возможны варианты "...сумму целых значений ФУНКЦИИ в найденной области". и "...сумму целых значений АРГУМЕНТА ФУНКЦИИ в найденной области" :))

Ответы на вопрос

Ответил sangers1959
0

Пошаговое объяснение:

\displaystyle  \\y=\sqrt{(\frac{x}{5-x})^{-1} } =\sqrt{\frac{5-x}{x} } .\\\\

ОДЗ: х≠0

\displaystyle  \\\frac{5-x}{x} \geq 0\\

-∞__-__0__+__5__-__+∞      ⇒         x∈(0;5]

Σ=1+2+3+4+5=15.

Ответ: Σ=15.


ГАЗ52: sangers1959, в учебнике : "для степенной функции с нецелым отрицательным показателем областью определения является луч (0; + беск)".
Новые вопросы