Р (х) = x3 - 3х2 - один корень многочлена x + р 2. Запишите этот многочлен и найдите оставшиеся корни.
Срочно нужноо
Ответы на вопрос
Ответ:
p=6 ; x12=(1+-√13)/2 ; x3=2
Многочлен : P(x)= x³-3x²-x+6
Объяснение:
Подставим известный корень в уравнение :
x³-3x²-x+p =0
x=2
8-12-2+p=0
p=6
x³-3x²-x+6=0
1 -й cпособ
По обобщенной теореме Виета
Сумма корней равна : x1+x2+x3= 3 , а произведение равно x1*x2*x3= -6
Тогда сумма двух других корней равна :
x1+x2=3-2=1
Произведение :
x1*x2= -6/2=-3
Тогда x1,x2 - корни уравнения
x^2-x-3=0
D = 1+ 12=13
x12=( 1+-√13)/2
2 cпособ.
Разделить данный многочлен в столбик на (x-2) или банально вынести этот множитель из многочлена . ( просто вынесу)
x^3-3*x^2 -x+6 = x^3 -2*x^2 -x^2-x+6 = x^2*(x-2) -(x-2)*(x+3) =
=(x-2)*( x^2-x-3) ( совпало , значит мы решили задачу правильно)
Ответ : p=6 ; x12=(1+-√13)/2 ; x3=2