Алгебра, вопрос задал vinyaikina , 9 лет назад

при каком значении a>0 функция y=  x^{2} +3ax+0,01 имеет наименьшее значение равное -2.24?

Ответы на вопрос

Ответил dnepr1
0
Только при значении а = 1 функция x^2+3*x+0.01 имеет минимум -2,24.
Точка пересечения графика функции с осью координат Y: График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+3*x+0.01.
Результат: y=0.01. Точка: (0, 0.01)

Точки пересечения графика функции с осью координат X: График функции пересекает ось X при y=0, значит нам надо решить уравнение: x^2+3*x+0.01 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-2.99666295470958. Точка: (-2.99666295470958, 0)x=-0.00333704529042345. Точка: (-0.00333704529042345, 0)
Экстремумы функции: Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: y'=2*x + 3=0
Решаем это уравнение и его корни будут экстремумами: x=-3/2. Точка: (-3/2, -2.24)

Новые вопросы