Математика, вопрос задал liga102 , 9 лет назад

Пожалуйста помогите решить.!!!!

НАЙТИ ПРОИЗВОДНЫЕ dy делить на dx данных функций:

 

y=кореньиз 1-4x делить на x^2

 

y=ln(x+корень из x^2+a)

 

y=sinxделить на 1+tgx

 

y=sin^4x +cos^4 x

 

Ответы на вопрос

Ответил Minsk00
0
НАЙТИ ПРОИЗВОДНЫЕ y' =dy/dx данных функций:  
y=корень(1-4x)/x²;   y=ln(x+корень(x^2+a));   y=sinx/(1+tgx);   y=sin^4x +cos^4 x

Решение
y=корень(1-4x)/x²
y' = ((корень(1-4x))' *x^2 -корень(1-4x)*(x²)')/x^4 =
= ((1/2)*(1-4x)^(-1/2)*(-4)*
x^2 -корень(1-4x)*2x)/x^4 =
=(-2x²/корень(1-4x)  -2x*корень(1-4х))/x^4 =-2/
(x²корень(1-4x))  -2корень(1-4х))/x^3 

у=ln(x+корень(x^2+a))
y' = (
ln(x+корень(x^2+a)))' = (1/(x+корень(x^2+a)))*(x+корень(x^2+a))'=
=
(1/(x+корень(x^2+a)))*(1+(1/2)*(x^2+a)^(-1/2)*2x)=
=
(1+x/корень(x^2+a))/(x+корень(x^2+a)) =
=(
(x+корень(x^2+a))/корень(x^2+a))/(x+корень(x^2+a))=
= 1/
корень(x^2+a)

y=sinx/(1+tgx);
y' = (sinx/(1+tgx))' = ((sinx)' *(1+tgx) - sinx*(1+tgx)')/(1+tgx)² =
= (cosx
*(1+tgx) - sinx*(1/cos²x))/(1+tgx)²=
=
(cosx + sinx  - sinx/cos²x))/(1+tgx)²
(1+tgx)² =1+tg²x+2tgx =1/cos²x  +2sinx/cosx =(1+sin(2x))/cos²x
 
(cosx + sinx  - sinx/cos²x))/(1+tgx)² =
=
(cosx + sinx  - sinx/cos²x))/((1+sin(2x))/cos²x)=
=(cos³x+cos²x*sinx -sinx)/(
1+sin(2x))

y=sin^4(x) +cos^4(x)

y' = (sin^4(x) +cos^4(x))' = 4sin³(x)*cos(x) +4cos³(x)*sin(x) =
=
4sin(x)*cos(x)(sin²(x) + cos²(x)) = 4sin(x)*cos(x) =2sin(2x)
Новые вопросы