Алгебра, вопрос задал riellewe , 7 лет назад

Помогите решить уравнение:)

 {x}^{4}  -  {x}^{3}  - 3 {x}^{2}  + 4x - 4 = 0

Ответы на вопрос

Ответил mmb1
0
как могу - попробую объяснить
Обычно если такие уравнения есть то они решаются за 5 минут или за 5 часов
К счастью этот из первой категории
--------------
Есть такое свойство уравнений в n - ной степени
Если есть целочисленные решения такого уравнения то целые решения являются делителями свободного члена 
то есть свободный член  4 значит целые решения могут быть +-1 +-2 +-4
Проверим
1 ...... 1-1-3+4-4 = -3 нет
-1 ..... 1 + 1 -3 -4 -4 = -9 нет
2.... 16 - 8 - 12 + 8 - 4 = 0 Да корень
-2  .... 16 + 8 - 12 - 8 - 4 = 0 Да это корень
Уже имеются два корня этого достаточно
Раскладываем на множители
(x-2)(x+2)(x^2-x+1)=0
квадратный трехчлен D=1-4<0 не имеет действительных корней
значит корни -2 и 2
====================
можно и по другому
x^4 - x^3 - 3x^2 + 4x - 4 = 
= x^4 - 2x^3 + x^3 - 2x^2 - x^2 +2x +2x-4 =
= x^3(x-2)+x^2(x-2) - x(x-2) + 2(x-2)=
=(x-2)(x^3 + x^2 - x +2) =
= (x-2)( x^3 + 2x^2 - x^2 - 2x + x+2)=
= (x-2)(x^2(x+2) - x (x+2) + 1(x+2))=
=(x-2)(x+2)(x^2-x+1) = 0
x=2
x=-2
D=1-4=-3<0 у квадратного уравнения нет действительных корней
Ответ - 2  и 2

Ответил riellewe
0
Поняла, спасибо огромное за объяснение!! :)
Ответил mmb1
0
ну и славненько.... учите и смотрите решение задач в интернете и задачниках. Главное желение и все найдете
Новые вопросы