Помогите пожалуйста с задачами!!!
1) Найдите объем правильной четырехугольной пирамиды, боковое ребро которой равно 12 см и образует с плоскостью основания угол 60 *?
1) Знайдіть об*єм правильної чотирикутної піраміди , бічне ребро якої дорівнює 12 см і утворює з площиною основи кут 60* ?
2) Длина стороны основания правильной четырехугольной пирамиды - 6 см, а боковое ребро образует с плоскостью основания угол 30 *. Найти объем пирамиды.
2) Довжина сторони основи правильної чотирикутної піраміди - 6 см, а бічне ребро утворює з площиною основи кут 30*. Знайти об*єм піраміди.
Ответы на вопрос
Ответил dnepr1
0
1) Найти объем правильной четырёхугольной пирамиды SАВСД, боковое ребро которой равно 12 см и образует с плоскостью основания угол 60°.
Проекция AO бокового ребра AS на основание - это половина диагонали квадрата в основании.
Отсюда находим сторону а основания и его площадь S.
a = √2*AS*cos 60° = √2*12*0,5 = 6√2.
So = a² = 72.
Высота Н пирамиды равна:
Н = AS*sin 60° = 12*(√3/2) = 6√3.
Ответ: V = (1/3)SoH = (1/3)*72*6√3 = 144√3 куб.ед.
2) Длина стороны основания правильной четырехугольной пирамиды - 6 см, а боковое ребро образует с плоскостью основания угол 30°. Найти объем пирамиды.
Проведём осевое сечение через 2 боковых ребра.
В сечении имеем равнобедренный треугольник с углами при основании в 30°.
Пусть боковое ребро равно х.
Тогда высота пирамиды как катет против угла в 30° равна (1/2)х.
Проекция АО бокового ребра AS на основание как половина диагонали основания равна (1/2)*6*√2 = 3√2.
По Пифагору х² = (3√2)² + ((1/2)х)².
х² - (1/4)х² = 18.
(3/4)х² = 18.
х² = 18*(4/3) = 24.
х = √24 = 2√6.
Тогда высота пирамиды Н = 0,5х = √6.
Ответ: V = (1/3)*6²*√6 = 12√6 куб.ед.
Проекция AO бокового ребра AS на основание - это половина диагонали квадрата в основании.
Отсюда находим сторону а основания и его площадь S.
a = √2*AS*cos 60° = √2*12*0,5 = 6√2.
So = a² = 72.
Высота Н пирамиды равна:
Н = AS*sin 60° = 12*(√3/2) = 6√3.
Ответ: V = (1/3)SoH = (1/3)*72*6√3 = 144√3 куб.ед.
2) Длина стороны основания правильной четырехугольной пирамиды - 6 см, а боковое ребро образует с плоскостью основания угол 30°. Найти объем пирамиды.
Проведём осевое сечение через 2 боковых ребра.
В сечении имеем равнобедренный треугольник с углами при основании в 30°.
Пусть боковое ребро равно х.
Тогда высота пирамиды как катет против угла в 30° равна (1/2)х.
Проекция АО бокового ребра AS на основание как половина диагонали основания равна (1/2)*6*√2 = 3√2.
По Пифагору х² = (3√2)² + ((1/2)х)².
х² - (1/4)х² = 18.
(3/4)х² = 18.
х² = 18*(4/3) = 24.
х = √24 = 2√6.
Тогда высота пирамиды Н = 0,5х = √6.
Ответ: V = (1/3)*6²*√6 = 12√6 куб.ед.
Новые вопросы