Алгебра, вопрос задал Koteno4ek2017 , 7 лет назад

Помогите доказать тождества

Приложения:

Ответы на вопрос

Ответил Universalka
0

a) Sin⁴α + 2Sin²αCos²α + Cos⁴α + Sin²α + Cos²α =

= (Sin⁴α + 2Sin²ααCos² + Cos⁴α) + (Sin²α + Cos²α) =

= (Sin²α + Cos²α)² + (Sin²α + Cos²α) = 1² + 1 = 2

2 = 2

Тождество доказано

б)

Sin(alpha+frac{pi }{3})-Sin(alpha-frac{pi }{3})= 2Sinfrac{alpha+frac{pi }{3}-alpha+frac{pi }{3}}{2}Cosfrac{alpha+frac{pi }{3}+alpha-frac{pi }{3}}{2}=2Sinfrac{pi }{3} Cosalpha=2*frac{sqrt{3} }{2}Cosalpha=sqrt{3}Cosalpha\\sqrt{3}Cosalpha=sqrt{3}Cosalpha

Тождество доказано

Новые вопросы