Геометрия, вопрос задал Печееенька , 8 лет назад

Площадь треугольника EOT равна 32см^2 .Треугольник ABC подобен треугольнику EOT , и его площадь равна 8 см^2.Найдите коэффициент подобия и сторону OE треугольника EOT , если AC =4 см и T=B


(ответ : 2 и 8)

Ответы на вопрос

Ответил Аноним
0
Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия.

 dfrac{S_1}{S_2} =k^2,,,,,,,, Rightarrow ,,,,, k= sqrt{ dfrac{S_1}{S_2} } = sqrt{ dfrac{32}{8} } =2

Поскольку коэффициент подобия равен 2, то ОЕ = 2 * АС = 2 * 4 = 8 см
Новые вопросы