Основанием пирамиды является правильный треугольник со стороной 6 см. Боковые ребра наклонены к плоскости основания под углом 60 °. Найти апофему пирамиды
Ответы на вопрос
Ответил RTA1414
0
Ответ: √39 см.
Объяснение:
1)Т.к. боковые рёбра наклонены к основанию на одинаковый угол⇒
основание высоты пирамиды находится в центре описанной около основания окружности; а₃=6 см по условию и а₃=R√3 ⇒ R=а₃:√3;
R=6:√3=2√3 (см).
2) Высота пирамиды ⊥ плоскости основания ⇒ h⊥R и
tg60°=h:R ⇒ h=R*tg60°=2√3*√3=2*3=6 (см).
3) а₃=2r√3, где r- радиус вписанной в основание окружности;
r=а₃:2√3=6:2√3=3:√3=√3 (см).
4) Пусть х- апофема пирамиды ⇒ х - гипотенуза прямоугольного треугольника с катетами r и h. Из теоремы Пифагора:
х=√(r²+h²)=√(√3²+6²)=√(3+36)=√39 (см).
Ответил malaakata903
0
Извините пожалуйста, а вы можете решить эту задачу воспользовавшись функцией угла наклона
Новые вопросы
Русский язык,
1 год назад
Русский язык,
1 год назад
Физика,
7 лет назад
Физика,
7 лет назад
Математика,
8 лет назад