Математика, вопрос задал novikovaanna1998 , 2 года назад

Найти производные dy/dx, пользуясь формулами дифференцирования.

Приложения:

Ответы на вопрос

Ответил Miroslava227
1

Ответ:

а

y =  \frac{2x}{ \sqrt{ {x}^{3} -  5 {x}^{2}  + 3} }  \\

y' =  \frac{(2x)' \times  \sqrt{ {x}^{3} - 5 {x}^{2}   + 3}  + ( {( {x}^{3} - 5 {x}^{2}  + 3) }^{ \frac{1}{2} })' \times 2x }{ {( \sqrt{ {x}^{3}  - 5 {x}^{2} + 3 } )}^{2} }  =  \\  =  \frac{2 \sqrt{ {x}^{3}  - 5 {x}^{2}  + 3}  +  \frac{1}{2}  {( {x}^{3}  - 5 {x}^{2}  + 3)}^{ -  \frac{1}{2} }  \times (3 {x}^{2}  - 10x) \times 2x}{ {x}^{3}  - 5 {x}^{2} + 3 }  =  \\  =  \frac{2}{ \sqrt{ {x}^{3}  - 5 {x}^{2}  + 3} }  +  \frac{x(3 {x}^{2} - 10x) }{ \sqrt{ {( {x}^{3}  - 5 {x}^{2} + 3 )}^{3} } }

б

y =  {( {3}^{ \cos(x) }  +  \sin {}^{2} (3x) )}^{3}

y' = 3 {( {3}^{ \cos(x) }   +  \sin {}^{2} (3x)   )}^{2}  \times \\  \times  ( ln(3)  \times  {3}^{ \cos(x) }   \times ( - \sin(x) ) + 2 \sin(3x)  \cos(3x)  \times 3) =  \\  = 3 {( {3}^{ \cos(x) }  +  \sin {}^{2} (3x) )}^{2}  \times(  -  ln(3)  \times  {3}^{ \cos(x) }  \sin(x)  + 3 \sin(6x))

в

y = arctg \frac{2x + 1}{2x - 1}   \\

y' =  \frac{1}{1 +  {( \frac{2x + 1}{2x - 1} )}^{2} }  \times  \frac{(2x + 1)' \times (2x - 1) - (2x - 1)'(2x + 1)}{ {(2x - 1)}^{2} }  =  \\  =  \frac{ {(2x - 1)}^{2} }{ {(2x - 1)}^{2} +  {(2x + 1)}^{2}  }  \times  \frac{2(2x - 1) - 2(2x + 1)}{ {(2x - 1)}^{2} }   = \\  =  \frac{4x - 2 - 4x - 2}{4 {x}^{2}  - 4x + 1 + 4 {x}^{2}  + 4x + 1}  =  \frac{ - 4}{8 {x}^{2}  + 2}  =  \\  =   - \frac{2}{4 {x}^{2}  + 1}

г

y =  \sqrt{ ln( \frac{ {x}^{2} + 3 }{ {x}^{3}  + 9x} ) }  \\

y' =  \frac{1}{2}  {( ln( \frac{ {x}^{2} + 3 }{ {x}^{3}  + 9x } ) )}^{ -  \frac{1}{2} }  \times ( ln( \frac{ {x}^{2}  + 3}{ {x}^{3}  + 9x} )) ' \times  \frac{( {x}^{2}  + 3)'( {x}^{3}  + 9x) - ( {x}^{3}  + 9x)'( {x}^{2} + 3) }{ {( {x}^{3} + 9x) }^{2} }  = \\   =  \frac{1}{2  \sqrt{ ln( \frac{ {x}^{2} + 3 }{ {x}^{3} + 9x } ) } }  \times  \frac{1}{ \frac{ {x}^{2}  + 3}{ {x}^{3}  + 9x} }  \times  \frac{2x( {x}^{3} + 9x) - (3 {x}^{2}   + 9)( {x}^{2}  + 3)}{ {( {x}^{3}  + 9x)}^{2} }  =   \\  =  \frac{1}{2 \sqrt{ ln( \frac{ {x}^{2}  + 3}{ {x}^{3} + 9x } ) } }  \times  \frac{ {x}^{3}  + 9x}{ {x}^{2}  + 3}  \times  \frac{2 {x}^{4}  + 18 {x}^{2} - 3 {x}^{4}  - 9 {x}^{2}   - 9 {x}^{2}  - 27}{ {( {x}^{3}  + 9x)}^{2} }  =  \\  =  \frac{1}{2 \sqrt{ ln( \frac{ {x}^{2} + 3 }{ {x}^{3} + 9x } ) } }  \times  \frac{ (-  {x}^{4} - 27) }{( {x}^{2}  + 3)( {x}^{3}  + 9x)}

д

y =  {( {x}^{3} + 2 )}^{ \sin(x) }  \\

y- = ( ln(y))'  \times y

( ln(y))'  = ( ln( {( {x}^{3} + 2 )}^{ \sin(x) } ) )' =  \\  = ( \sin(x) \times   ln({x}^{3}  + 2))' =  \\  =  \cos(x) \times   ln( {x}^{3}  + 2)  +  \frac{1}{ {x}^{3} + 2 }  \times 3 {x}^{2}  \times  \sin( x )

y '=  {( {x}^{3} + 2 )}^{ \sin(x) }  \times ( ln( {x}^{3}  + 2)  \cos(x)  +  \frac{3 {x}^{2} \sin( x)  }{ {x}^{3}  + 2} ) \\

Новые вопросы