Найти лимит,без лопиталя
(x-1)/(x^(6/5)-x) x->1
Ответы на вопрос
Ответил Vasily1975
0
Ответ: 5.
Пошаговое объяснение:
Прежде всего, положим x^(1/5)=t, тогда x=t⁵, x^(6/5)=t⁶ и при x⇒1 t⇒1. Тогда выражение под знаком предела примет вид (t⁵-1)/(t⁶-t⁵)=(t⁵-1)/[t⁵*(t-1)]. Но так как t⁵-1=(t-1)*(t⁴+t³+t²+t+1), то числитель и знаменатель сокращаются на t-1, и тогда задача сводится к нахождению предела дроби (t⁴+t³+t²+t+1)/t⁵ при t⇒1. Подставляя в это выражение значение t=1, находим, что искомый предел равен (1⁴+1³+1²+1+1)/1⁵=5/1=5.
Vasily1975:
Решение готово.
Новые вопросы
Математика,
1 год назад
Английский язык,
1 год назад
Музыка,
1 год назад
Русский язык,
1 год назад
Математика,
6 лет назад