Алгебра, вопрос задал ЛюбимаяЕго , 10 лет назад

найдите значение пераметра а,при котором каксательная к графику функции у=а(1+sin2x) в точке с абсциссой х=pi/3 параллельна биссиктрисе первой координатной четверти

Ответы на вопрос

Ответил Mishoon5
0

а - параметр, значит можно считать числом 

y = a + asin2x

y' = 2acos2x

y(x₀) = y(π/3) = a + asin(2π/3) = a + a√3/2

y'(x₀) = y'(π/3) = 2acos(2π/3) = 2a*(-1/2) = -a

Уравнение касательной:

y = y(x₀) - y'(x₀)(x - x₀)

y = a + a√3/2 + a(x - π/3)

y = a + a√3/2 + ax - aπ/3

y = ax + a + a√3/2 - aπ/3

Получилась ф-ия, вида y = k1x + c, где k1 = a

Биссектриса первой координатной четверти - это y = x, где k2 = 1

Параллельные линейные ф-ии имеют одинаковое k. 

Значит k1 = k2; a = 1

Ответ: 1

Новые вопросы