Найдите углы треугольника авс,если угол а:угол В :угол С=2:3:4
Ответы на вопрос
Ответил Ёлочка0
0
Дано:
уголА:уголВ:уголС=2:3:4
Найти:угол А,В,С
Решение:
Пусть 1 часть-х,тогда уголА=2х,угол В=3Х,угол С=4Х
Так как угол А+уголВ+уголС=180(по теореме о сумме углов Δ)
2х+3х+4х=180
9х=180
х=20
Имеем,что 20-приходится на 1 часть,следовательно,
угол А=2*20=40,угол В=3*20=60,угол С=4*20=80
Ответ:Угол А=40,угол В=60,угол С=80
уголА:уголВ:уголС=2:3:4
Найти:угол А,В,С
Решение:
Пусть 1 часть-х,тогда уголА=2х,угол В=3Х,угол С=4Х
Так как угол А+уголВ+уголС=180(по теореме о сумме углов Δ)
2х+3х+4х=180
9х=180
х=20
Имеем,что 20-приходится на 1 часть,следовательно,
угол А=2*20=40,угол В=3*20=60,угол С=4*20=80
Ответ:Угол А=40,угол В=60,угол С=80
Новые вопросы
Қазақ тiлi,
2 года назад
Русский язык,
2 года назад
Алгебра,
9 лет назад
Математика,
9 лет назад
Алгебра,
9 лет назад