Найдите наибольшее значение функции y=(x−8)2(x−9)+1y на отрезке [-4; 8,5]
dnepr1:
А что это +1y?
Ответы на вопрос
Ответил zoriana1254
0
Пошаговое объяснение:
Дана функция y=(x-8)²·(x-9)+1 на отрезке [-4; 8,5].
Находим производную от функции:
y' = ((x-8)²·(x-9)+1)' = ((x-8)²)'·(x-9)+(x-8)²·(x-9)'+0 = 2·(x-8)·(x-9)+(x-8)² =
= 2·x²-34·x+144+x²-16·x+64 = 3·x²-50·x+208.
Определим стационарные точки:
y' = 0 ⇔ 3·x²-50·x+208=0. Тогда
D = (-50)²-4·3·208 = 2500-2496 = 4 = 2²,
x₁=(50-2)/(2·3)=48/6=8∈[-4; 8,5],
x₂=(50+2)/(2·3)=52/6=8 4/6=8 2/3 ∉[-4; 8,5].
Вычислим значения функции при x = -4, x = 8 и x = 8,5:
y(-4) = (-4-8)²·(-4-9)+1 = 144·(-13)+1 = -1872+1 = -1871;
y(8) = (8-8)²·(8-9)+1 = 0·(-1)+1 = 0+1 = 1;
y(8,5) = (8,5-8)²·(8,5-9)+1 = 0,25·(-0,5)+1 = -0,125+1 = 0,875.
Наибольшее значение функции y=(x-8)²·(x-9)+1 на отрезке [-4; 8,5] :
y(8) = 1.
Новые вопросы
Математика,
1 год назад
Математика,
1 год назад
Алгебра,
6 лет назад
Українська мова,
6 лет назад
Алгебра,
8 лет назад
Математика,
8 лет назад