Надо решить,с пояснением!!! Отдаю максимум баллов!!!
Ответы на вопрос
1) Отрезок - часть прямой, ограниченная двумя точками. Луч- часть прямой, имеющая начало. но не имеющая конца. Угол-это геометрическая фигура. состоящая из точки и двух лучей,исходящих из этой точки. Развёрнутый угол- это угол равный 180 градусам. ЛУЧ: луч ОА или луч а. УГОЛ: угол АОВ, угол О и угол kl.
2)Пусть есть два треугольника ABC и A'B'C', углы A и A' равны, AB=A'B'; AC=A'C'. Докажем, что эти треугольники равны.
Будем накладывать эти треугольники. Сначала совместим точки A и A' и разместим треугольники так, чтобы лучи AB и A'B', а также лучи AC и A'C' оказали сонаправленными (это можно сделать, т.к. углы при вершине А равны)
Т.к. AB=A'B'; AC=A'C, то точки B и B', а также точки C и С' попарно совпадут. Но тогда совпадут и отрезки BC и B'C' - иначе через 2 точки проходило бы 2 прямые, что невозможно. Признак доказан.
Билет 2
1) Фигуры считаются равными, если они при наложении совмещаются. Середина отрезка-точка, равноудаленная от концов отрезка. Биссектриса угла-луч, исходящий из вершины угла и делящий данный угол пополам-на 2 равные части.
2)Треугольник АВС и треугольник А1В1С1 равны по стороне и двум прилежащим к ней углам. Отрываем треугольник АВС. Точку А совмещаем с точкой А1. Луч АС совмещаем с лучом А1С1. Но отрезок АС равен отрезку А1С1. А на данной полупрямой от её начала можно отложить только один отрезок данной линейной меры, значит, точка С совпадет с точкой С1. Но угол А равен углу А1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч АВ пойдёт по лучу А1В1. Но угол С равен углу С1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч ВС пойдёт по лучу В1С1. А две прямые пересекаются только в одной точке. Лучи АВ и ВС и лучи А1В1 и В1С1 пресекутся в одной точке. Треугольники совпали всеми своими точками. Значит они равны. Теорема доказана.
Билет 3
1)Смежными называются два угла, одна сторона которых общая, а две другие образуют прямую.
Сумма смежных углов равна 180 градусам.
Два смежных углы образуют развернутый угол.
Если два угла равны, то смежные с ними углы тоже равны.
Угол, смежный с прямым углом, является прямым.
Угол, смежный с острым углом, тупой.
Угол, смежный с тупым углом, является острым.
Любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два смежные углы.
Если два угла равны, то смежные с ними углы также равны.
Два угла, смежные с одним и тем же углом, уровне.
Если два смежных углы равны, то они прямые.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.
Если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.
2)Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Дано:
ΔABC,
ΔA1B1C1,
AB=A1B1, AC=A1C1, BC=B1C1.
Доказать:
ΔABC= ΔA1B1C1
Доказательство:
Приложим треугольник A1B1C1 к треугольнику ABC так, чтобы
вершина A1 совместилась с вершиной A,вершина B1 совместилась с вершиной B,точки C1 и C лежали по разные стороны от прямой AB.При этом возможны три случая взаимного расположения луча CC1 и угла ACB.