На стороне BC ромба ABCD выбрана точка K так, что AK=BD. Оказалось, что ∠KAD=3∠BDK. Найдите угол ABC
Ответы на вопрос
Ответил siestarjoki
33
Противоположные стороны параллелограмма параллельны, ABKD - трапеция.
Диагонали равны (AK=BD) - трапеция равнобедренная.
Равнобедренную трапецию можно вписать в окружность.
Вписанный угол равен половине дуги, на которую опирается.
∠KAD=∪KD/2
∠BDK=∪BK/2
∠BDK=∠KAD/3 => ∪BK =∪KD/3
Смежные стороны ромба равны, AB=AD.
Боковые стороны равнобедренной трапеции равны, AB=KD.
Равные хорды стягивают равные дуги.
∪AB=∪AD=∪KD
∪AB+∪BK+∪KD+∪AD =360 => 10/3 ∪KD =360 => ∪KD=108
∠ABK =(∪AD+∪KD)/2 =∪KD =108
Приложения:
misterpinyoutube:
Спасибо))
Новые вопросы