На сторонах угла CAD отмечены точки B и E так, что
точка В лежит на отрезке АС, а точкаЕ-на отрезке АD, причем АС=AD и
АВ=АЕ.Докажите что CBD=DEC
Ответы на вопрос
Ответил Аноним
0
На сторонах CAD отмечены точки В и Е так, что точка В лежит на отрезке АС, а точка Е - на отрезке АD, причем АС=АD и АВ=АЕ. Докажите, что угол СВD=углу DЕС.Дано: CAD-треуг.В прин АСЕ прин АД АС=АD АВ=АЕ_____До., что угол СВD=
углу DЕС. Решение:треуг САД-равнобедр,т.к. АС=АД. и если АВ=АЕ,то ВС=ЕД.соединим С и Е,В и D.рассмотрим треуг. BDC и CED,в них: CD-общая,ВС=ЕД,угол ВСД= углу ЕДС (как углы при основании равнобедр треуг),следоват треуг. BDC=CED (по двум сторонам и углу между ними) , в равных треугольниках все соответствующие элементы равны,следов. угол СВD=
углу DЕС.
углу DЕС. Решение:треуг САД-равнобедр,т.к. АС=АД. и если АВ=АЕ,то ВС=ЕД.соединим С и Е,В и D.рассмотрим треуг. BDC и CED,в них: CD-общая,ВС=ЕД,угол ВСД= углу ЕДС (как углы при основании равнобедр треуг),следоват треуг. BDC=CED (по двум сторонам и углу между ними) , в равных треугольниках все соответствующие элементы равны,следов. угол СВD=
углу DЕС.
Новые вопросы
Математика,
2 года назад
Английский язык,
2 года назад
Литература,
9 лет назад
Математика,
9 лет назад