Геометрия, вопрос задал sr692007 , 9 лет назад

на двух сторонах прямого угла с вершиной м выбраны точки d и k соответственно так, что md: mk=7.На биссектрисе угла dmk взята точка e, равноудалённая от точек d и k.определите длину dk, если me равно 4

Ответы на вопрос

Ответил sweeets
0

Решение во влажениях....

Приложения:
Ответил cos20093
0

Если из точки e опустить перпендикуляры на md - пусть основание перпендикуляра - точка p, и на mk (точнее, на продолжение за точку к, основание перпендикуляра точка q), то ep = eq, так как me - биссектриса. Поэтому треугольники dep и keq равны. То есть kq = dp.

Пусть mp = mq = х; dp = kq = y;

Тогда md = x + y; mk = x - y;

(x + y)/(x - y) = 7;

Отсюда y = x*3/4;

Далее, x = me/√2; или 2x^2 = me^2;

и при этом

dk^2 = md^2 + mk^2 = (x+y)^2 + (x - y)^2 = 2(x^2 + y^2) = 2x^2(1 + (3/4)^2) = 2x^2(25/16) =

=  me^2(25/16) = (me*5/4)^2;

dk = 5;

 

У этой задачи есть слегка нестандартное решение. Дело в том, что peqm - квадрат, то есть mp = pl = lk = mk, а lkq и dep - равные прямоугольные треугольники с отношением катетов 3/4, то есть египетские. То есть lk = ld = (5/4)mp, откуда сразу следует, что dk/me = 5/4 (два равнобедренных прямоугольных треугольника lpm и dlk, катеты относятся, как 5/4, так же относятся и гипотенузы).

Приложения:
Новые вопросы