Математика, вопрос задал eeeeedsdsdsds , 2 года назад

На доске написано число. Школьник играет в арифметическую игру: он может либо стереть последнюю цифру написанного числа, либо прибавить к написанному числу число 2019 и записать полученный результат, стерев предыдущее число. Может ли школьник, действуя таким образом, в конце концов получить число 1? Какое наименьшее пятизначное число может получиться, если на доске записано число 43? (В ответе запиши да или нет.)


eeeeedsdsdsds: забыл добавить напишите пятизначное число

Ответы на вопрос

Ответил VasyaZaitcev2006
1

Ответ: да, 10000.

Пошаговое объяснение:

Путём прибавления числа 2019 495295*10^n раз для подходящего n (то есть прибавлением 1 000 000 605*10^n) из любого числа можно получить число, первые 5 цифр которого суть 10000. Затем путём стирания необходимого количества цифр с правого конца получим либо 1, либо 10000 - наименьшее пятизначное число.


eeeeedsdsdsds: спасибо!
Новые вопросы