Математика, вопрос задал gnomiha211 , 2 года назад

N16 Найдите значение выражения (тема- прогрессии)
 \frac{( {b}^{17} - 1)(b + 1) }{ {b}^{16} + {b}^{15} + ... + b + 1 } =
при b=-3

(У меня вышел ответ 8 , но в тестах указан 16, не могу найти ошибку()

Спасибо всем, кто помогает❤

Ответы на вопрос

Ответил mmb1
2

b^n - 1 = (b - 1)(b^(n-1)+b*(n-2)+....+b^2 + b + 1)

b^17 - 1 = (b - 1)(b^16 + b^15 + .....+ b^2+b+1)

(b^17 - 1)(b + 1)/(b^16 + b^15 + .....+ b^2+b+1) = (b - 1)(b + 1) = b^2 - 1

b = -3

9 - 1 = 8

-----

16 равно когда (b^17 - 1)(b - 1)/(b^16 + b^15 + .....+ b^2+b+1) = (b - 1)(b - 1) = (b - 1)^2   ( (-3 - 1)^2 = 16)


gnomiha211: спасибо большое!))
mmb1: очень часто в ответах бывают ошибки
если уверены в решении и ответе, не обращайте внимание
gnomiha211: спасибо за совет, вы правы)
Новые вопросы