Алгебра, вопрос задал 16hhhhh , 10 лет назад

квадрат суммы двух последовательных натуральных чисел больше суммы их квадратов на 112.найдите эти числа.

Ответы на вопрос

Ответил Илюха2002
0

а первое число

в второе число, в=а+1

 

(а+(а+1))^2=112+a^2+(a+1)^2

a^2+2a(a+1)+(a+1)^2=a^2+(a+1)^2+112

2a(a+1)=112

2a^2+2a-112=0

a=(-2+-sqrt{2^2-4*2*(-112)})/2*2

a=(-2+-30)/4

a1=-8 соответственно в=-7

a2=7 соответственно в=8

Новые вопросы