Алгебра, вопрос задал Anastasiv , 7 лет назад

Катер прошел 14 км по озеру и 8 км по течению реки. На весь путь он затратил 4 ч. Какова собственная скорость катера, если скорость течения 3 км/ч?

Ответы на вопрос

Ответил samira2143
0

пусть собственная скорость катера равна х, значит, по озеру катер шел со скоростью х км/ч. А по течению реки катер шел со скоростью (х + 3) км/ч.

Выразим время движения катера по течению реки: t = S/v; 5/(х + 3).

Выразим время движения катера по озеру: 8/х.

Так на все он потратил 1 час, составляем уравнение:

5/(х + 3) + 8/х = 1;

(5х + 8х + 24)/х(х + 3) = 1;

(13х + 24)/(х² + 3х) = 1.

По правилу пропорции: х² + 3х = 13х + 24;

х² + 3х - 13х - 24 = 0;

х² - 10х - 24 = 0.

D = 100 + 96 = 196 (√D = 14);

х1 = (10 - 14)/2 = -2 (не подходит).

х2 = (10 + 14)/2 = 12 (км/ч) - собственная скорость катера.

Тогда скорость по течению будет равна х + 3 = 12 + 3 = 15 (км/ч).

Ответ: скорость катера по течению равна 15 км/ч.

Новые вопросы