Хлопчик купив 44 марки вартістю 4 коп., 5 коп. і 10 коп. за штуку, заплативши за марки кожного виду однакові суми грошей. Скільки марок кожного виду купив хлопчик?
Ответы на вопрос
Ответ:
Позначимо кількість марок вартістю 4 коп. як "a", кількість марок вартістю 5 коп. як "b" і кількість марок вартістю 10 коп. як "c".
Відомо, що хлопчик купив 44 марки, тому:
a + b + c = 44 -----(1)
Також відомо, що хлопчик заплатив за марки кожного виду однакові суми грошей.
Ціна за марку вартістю 4 коп. дорівнює 4 коп., тому сума грошей, яку видатково хлопчик заплатив за ці марки, дорівнює 4a коп.
Аналогічно, сума грошей, яку видатково хлопчик заплатив за марки вартістю 5 коп., дорівнює 5b коп., а за марки вартістю 10 коп. - 10c коп.
Отже, ми маємо рівняння:
4a = 5b = 10c -----(2)
З рівняння (2) ми можемо висловити змінні a і b через змінну c, якщо припустити, що c дорівнює 1:
4a = 10
5b = 10
Звідси отримуємо:
a = 10 / 4 = 2.5
b = 10 / 5 = 2
Оскільки a і b повинні бути цілими значеннями (кількість марок не може бути нецілим числом), ми не можемо мати a = 2.5 і b = 2.
Отже, наше припущення, що c дорівнює 1, є неправильним.
Спробуємо припустити, що c дорівнює 2:
4a = 10
5b = 20
Звідси отримуємо:
a = 10 / 4 = 2.5
b = 20 / 5 = 4
Також, ми повинні врахувати, що кількість марок повинна бути цілим числом, тому значення a та b також повинні бути цілими числами.
Заокруглимо a і b до найближчих цілих чисел: a = 2, b = 4.
Тепер, підставимо значення a, b і c у рівняння (1):
2 + 4 + c = 44
6 + c = 44
c = 44 - 6
c = 38
Отже, хлопчик купив 2 марки вартістю 4 коп., 4 марки вартістю 5 коп. і 38 марок вартістю 10 коп.