Геометрия, вопрос задал korvo810 , 1 год назад

Геометрия 3 задачи заю 100 баллов
Полный ответ и ход решения

Приложения:

Ответы на вопрос

Ответил anastasialajgert72
1

Ответ:

) Дан треугольник АВС, угол С - прямой. СM- биссектриса, СК- высота(см рисунок)

\angle ACK=\angle KCB= 45 ^{o} ,\angle KCM=15 ^{o}∠ACK=∠KCB=45

o

,∠KCM=15

o

значит

\angle ACK=45 ^{o} -15 ^{o}=30 ^{o}∠ACK=45

o

−15

o

=30

o

Из прямоугольного треугольника АСК

\angle CAK=60 ^{o}, \angle ABC=30 ^{o}∠CAK=60

o

,∠ABC=30

o

Значит АС=6 см, СВ=6·√3

2) Дан треугольник АВС, угол С - прямой. СM- биссектриса ( см тот же рисунок)

По условию АМ:МВ=3:4

Свойство биссектрисы угла треугольника: биссектриса угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам.

АС:ВС=АМ:МВ=3:4

Пусть АС=3х, тогда ВС=4х.

По теореме Пифагора АВ=5х=√(3х)²+(4х)²

Периметр Р=3х+4х+5х=12х, а по условию задачи 84 см.

12х=84,

х=7

Тогда стороны треугольника АС=21 см, ВС=28 см, АВ=35 см.


korvo810: Что такое angle?
Новые вопросы