Доведіть що різниця квадратів двох послідвних непарних чисел завжди діляця на 8
Ответы на вопрос
Ответил mykhailofesenko
3
Відповідь:
Пояснення:
(n+2)^2-n^2=n^2+4n+4-n^2=4n+4=4(n+1)
из-за того что n непарное, то n+1 делится на 2. Поэтому 4(n+1) делиться на 8, поэтому (n+2)^2-n^2 делиться на 8.
Выбраны числа n и n+2, потому что следующие не парное находиться от другого на расстоянии 2, пример: 11, 13. 13=11+2
Новые вопросы