Математика, вопрос задал 1001010492818 , 7 лет назад

Дослідити функцію f(x)=x^2-1/4 x^4 на монотонність та екстремуми та побудувати ескіз її графік.


Ответы на вопрос

Ответил xxxeol
0

ДАНО: y= -0,25*x⁴+*x².


Исследование:

1. Область определения: D(y)= R, X∈(-∞;+∞)


2. Непрерывная. Гладкая. Вертикальных асимптот - нет


3.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞.


4. Нули функции, пересечение с осью ОХ. Y(x)=0.


Применим метод подстановки. z=x².    -0,25z² + z= 0


Нули функции: x₁=-2,  x₂ = х₃=0,  x₄ = 2.


5. Интервалы знакопостоянства.


Положительна: Y(x) >=0 - Х∈[-2;2].

Отрицательна: Y<0 - X∈(-∞;-2]∪[2;+∞).

6. Проверка на чётность. Все степени при Х: 4, 2 - чётные.


Функция чётная: Y(-x) = Y(x)


7. Поиск экстремумов по первой производной.  

Y'(x) = -x³ + 2*x = -x*(x² - 2) = 0  

Точки экстремумов: x₅ = -√2, х₆ = 0,  х₇  = √2 (≈1,4)

7. Локальный экстремум: Ymin(0) = 0, Ymax - Y(x₅) = Y(х₇) = 1.  

8. Интервалы монотонности.


Убывает - X∈(-√2;0]∪[√2;+∞), возрастает - X∈(-∞;-√2]∪[0;√2]


9. Поиск перегибов по второй производной.


Y"(x) = -3*x² + 2 = 0,   x = √(2/3) ≈ 0.82 - точки перегиба - . Y"(x)>0  

10. Вогнутая - "ложка" - X∈[-0.82;+0.82],

Выпуклая - "горка" - Х∈(-∞;-0.82]∪[0.82;+∞).


11. Область значений. E(y) = [1;-∞)


12. График функции в приложении.



Приложения:
Новые вопросы