Обществознание, вопрос задал Аноним , 2 года назад

Докажите, что если у тетраэдра два отрезка, идущие из вершин некоторого ребра, в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из вершин скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются

Ответы на вопрос

Ответил ExPeD25
1

Ответ:

Решение:

Пусть A1 — центр вписанной окружности  ∆ SBC, B1 — центр вписанной окружности  ∆ SAC, AA1 пересекается с  A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в  ∆ ASB и C в  ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей  ∆ ASB и  ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.

Объяснение:

Новые вопросы