Докажите что биссектрисы равнобедренного треугольника проведенные из углов при основании равны
Ответы на вопрос
Ответил koholesko
0
Доказательство:
Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы.
Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника.
Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы.
Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника.
Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Новые вопросы